Rutgers University: Real Variables and Elementary Point-Set Topology Qualifying Exam
 January 2016: Problem 1 Solution

Exercise. A subset A of \mathbb{R}^{n} is said to be path-connected if, given any two points $x_{0}, y_{0} \in A$, there exists a continuous path $\phi:[0,1] \rightarrow A$ such that $\phi(0)=x_{0}$ and $\phi(1)=y_{0}$
(a) Prove that if $A \subset \mathbb{R}^{n}$ is non-empty and path-connected, then A is connected.

Solution.

A is connected if it cannot be written as the union of two disjoint nonempty open sets. Assume A is disconnected. Then $\exists X, Y \subset A$ s.t.
i) $X \neq \emptyset$ and $Y \neq \emptyset$ are both open
ii) $A=X \cup Y$, and
iii) $X \cap Y=\emptyset$.

Since $A=X \cup Y$ is path-connected, for $x_{0} \in X \subset A$ and $y_{0} \in Y \subset A$, there exists a continuous path $\phi:[0,1] \rightarrow X \cup Y$ such that $\phi(0)=x_{0}$ and $\phi(1)=y_{0}$.
Thus,
i) $\phi^{-1}(X) \subset[0,1]$ and $\phi^{-1}(Y) \subset[0,1]$ are both open and non-empty
ii) $[0,1]=\phi^{-1}(X) \cup \phi^{-1}(Y)$
iii) $\phi^{-1}(X) \cap \phi^{-1}(Y)=\emptyset$

Therefore, $[0,1]$ disconnected. But $[0,1]$ is connected, so this gives us a contradiction! Thus, A must be connected.
(b) Suppose now that A is an open subset of \mathbb{R}^{n}. For $x \in A$, let C_{x} be the set of points z in A for which there is a continuous path in A from x to z. Prove that C_{x} is open in A. (Hint: use the fact that every ball in \mathbb{R}^{n} is path-connected, and use composition of paths.)

Solution.

Let $z \in C_{x}$.
Then exists a continuous path in A from x to z.
Since A is open, there exists a ball $B_{z} \subset A$ centered at z.
Let $z_{0} \in B_{z}$.
Since every ball in \mathbb{R}^{n} is path-connected, there exists a continuous path in A from z to z_{0}.
Using the composition of paths, it follows that there is a continuous path from x to z_{0}.
Thus, $z_{0} \in C_{x}$, and so $B_{z} \subset C_{x}$ since $z_{0} \in B_{z}$ was arbitrary.
Since $z \in C_{x}$ was arbitrary, it follows that C_{x} is open in A.
(c) Continuing with the assumptions of part (b), prove that for any two points $x, y \in A$ either $C_{x}=C_{y}$ or $C_{x} \cap C_{y}=\emptyset$.

Solution.

Let $x, y \in A$ and suppose that $C_{x} \cap C_{y} \neq \emptyset$.
Let $z \in C_{x} \cap C_{y}$ and $z_{1} \in C_{x}$.
Then, there exists continuous paths connecting y to z, z to x, and x to z_{1}.
Using the composition of paths, it follows that there exists a continuous path from y to z_{1}.
Thus, $z_{1} \in C_{y}$, and so $C_{x} \subseteq C_{y}$.
Similarly if $z_{2} \in C_{y}$, then there exists continuous paths connecting x to z, z to y, and y to z_{2}
Using the composition of paths, it follows that there exists a continuous path from x to z_{2}.
Therefore, $z_{2} \in C_{x}$, and so $C_{y} \subseteq C_{x}$.
Thus, we conclude that $C_{x}=C_{y}$.
(d) Continuing with the assumptions of parts (b) and (c), prove that if A is connected, then A is also path-connected. (Hint: use the fact that A can be written as $\bigcup_{x \in A} C_{x}$)

Solution.

Suppose that A is connected and note that $A=\bigcup_{x \in A} C_{x}$.
Let $x_{0} \in A$ and suppose $C_{x_{0}} \subsetneq A$.

$$
\Longrightarrow \exists \bigcup_{y \in A \backslash C_{x_{0}}} C_{y} \neq \emptyset \text { s.t. } y_{0} \notin C_{x_{0}} .
$$

Moreover, in part (b) we showed that $C_{x_{0}}$ and C_{y} are both open for all y $\Longrightarrow\left(\bigcup_{y \in A \backslash C_{x_{0}}} C_{y}\right)$ is open since it is the union of open sets.
Since $y \notin C_{x_{0}}$ for any y, it follows that $C_{x_{0}} \neq C_{y}$.
By part (c), $C_{x_{0}} \cap C_{y}=\emptyset$ for all $y \in A \backslash C_{x_{0}}$

$$
\begin{aligned}
\Longrightarrow C_{x_{0}} \cap\left(\bigcup_{y \in A \backslash C_{x_{0}}} C_{y}\right) & =\emptyset . \text { Thus, } \\
A & =C_{x_{0}} \cup\left(\bigcup_{y \in A \backslash C_{x_{0}}} C_{y}\right)
\end{aligned}
$$

is the union of two disjoint nonempty open sets.
But then, A is not connected, so this is a contradiction!
Thus, $A=C_{x_{0}}$, which is path-connected.

